Finite Morse Index Implies Finite Ends
نویسندگان
چکیده
منابع مشابه
Finite Morse Index Implies Finite Ends
We prove that finite Morse index solutions to the Allen-Cahn equation in R2 have finitely many ends and linear energy growth. The main tool is a curvature decay estimate on level sets of these finite Morse index solutions, which in turn is reduced to a problem on the uniform second order regularity of clustering interfaces for the singularly perturbed Allen-Cahn equation in Rn. Using an indirec...
متن کاملPositive Sofic Entropy Implies Finite Stabilizer
We prove that, for a measure preserving action of a sofic group with positive sofic entropy, the stabilizer is finite on a set of positive measures. This extends the results of Weiss and Seward for amenable groups and free groups, respectively. It follows that the action of a sofic group on its subgroups by inner automorphisms has zero topological sofic entropy, and that a faithful action that ...
متن کاملFinite Gorenstein Representation Type Implies Simple Singularity
Let R be a commutative noetherian local ring and consider the set of isomorphism classes of indecomposable totally reflexive R-modules. We prove that if this set is finite, then either it has exactly one element, represented by the rank 1 free module, or R is Gorenstein and an isolated singularity (if R is complete, then it is even a simple hypersurface singularity). The crux of our proof is to...
متن کاملFINITE VOLUME FLOWS and MORSE THEORY
x0. Introduction. In this paper we present a new approach to Morse theory based on the de Rham Federer theory of currents. The full classical theory is derived in a transparent way. The methods carry over uniformly to the equivariant and the holomorphic settings. Moreover, the methods are substantially stronger than the classical ones and have interesting applications to geometry. They lead, fo...
متن کاملFinite volume flows and Morse theory
In this paper we present a new approach to Morse theory based on the de Rham-Federer theory of currents. The full classical theory is derived in a transparent way. The methods carry over uniformly to the equivariant and the holomorphic settings. Moreover, the methods are substantially stronger than the classical ones and have interesting applications to geometry. They lead, for example, to form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2019
ISSN: 0010-3640,1097-0312
DOI: 10.1002/cpa.21812